Reproducible Computational Experiments Using SCons

Sergey Fomel
University of Texas at Austin
Gilles Hennenfent
University of British Columbia
Problem

- How to publish computational results?
 - scientific publication
 - technology transfer

- Within the world of science, computation is now rightly seen as a third vertex of a triangle complementing experiment and theory. However, as it is now often practiced, one can make a good case that computing is the last refuge of the scientific scoundrel.
 – Randall LeVeque
Outline

- Reproducible research at Stanford
 - lessons

- Reproducible computational experiments
 - Implementation in MADAGASCAR
 - test-driven development using SCons

- Road to the future
 - community effort
Reproducible Research at Stanford

- **Donald Knuth**
 - literate programming
 - A computer program should be written with human readability as a primary goal.

- **Jon Claerbout**
 - reproducible research
 - The purpose of reproducible research is to facilitate someone going a step further by changing something.

- **David Donoho**
 - reproducible research using Matlab
 - An article about computational science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship.
Lessons of Reproducible Research

- **Motivation**
 - scientific integrity
 - robust software development
 - technology transfer

- **Tools**
 - computational experiments
 - publication

- **Maintenance**
 - test-driven development
Implementation in MADAGASCAR

- Open-source package (GPL)
 - released in 2006
 - 16 developers

- Three levels
 - command-line modules
 - C, Fortran, Python, Matlab
 - signal processing scripts
 - SCons
 - publications
 - LaTeX + latex2html + SCons

http://rsf.sourceforge.net/
SCons (Software Construction)

- Python-based replacement for “make”
 - reliable, automatic, and extensible dependency analysis
 - winner of the Software Carpentry competition
 - configuration files are Python scripts

- Features
 - support for different programming languages
 - support for parallel builds.
 - configuration support analogous to autoconf
 - cross-platform
 - open-source

http://www.scons.org
SConstruct File for Compilation

Program('program', ['main.c', 'file1.c', 'file2.c'])

bash$ scons
scons: Building targets ...
cc -c -o file1.o file1.c
cc -c -o file2.o file2.c
cc -c -o main.o main.c
cc -o program main.o file1.o file2.o
scons: done cleaning targets.
import rsfproj as p

Download data
p.Fetch('lena.img','imgs')

Convert to a floating-point format
p.Flow('lena','lena.img',
 '''echo n1=512 n2=513 in=$SOURCE
data_format=native_uchar | transp |
window f1=1 | dd type=float''')

Bandpass filtering
p.Flow('band','lena','bandpass flo=0.1')

Plotting
for img in ('lena','band'):
p.Plot(img,'grey allpos=y wanttitle=n screenratio=1')
bash$ scons
scons: Building targets ...
retrieve(["lena.img"], [])
< lena.img echo n1=512 n2=513 in=lena.img data_format=native_uchar | /
/path/transp | /path/window f1=1 | /path/dd type=float > lena.rsf
< lena.rsf /path/bandpass flo=0.1 > band.rsf
< band.rsf /path/grey allpos=y wanttitle=n screenratio=1 > band.vpl
< lena.rsf /path/grey allpos=y wanttitle=n screenratio=1 > lena.vpl
scons: done building targets.
Experimentation

bash$ sed s/flo=0.1/flo=0.2/ < SConstruct > SConstruct2
bash$ mv SConstruct2 SConstruct
bash$ scons
scons: Building targets ...
< lena.rsf /path/bandpass flo=0.2 > band.rsf
< band.rsf /path/grey allpos=y wanttitle=n screenratio=1 > band.vpl
scons: done building targets.

bash$ sed s/wanttitle=n/title=Lena/ < SConstruct > SConstruct2
bash$ mv SConstruct2 SConstruct
bash$ scons
scons: Building targets ...
< lena.rsf /path/bandpass flo=0.2 > band.rsf
< band.rsf /path/grey allpos=y title=Lena screenratio=1 > band.vpl
< lena.rsf /path/grey allpos=y title=Lena screenratio=1 > lena.vpl
scons: done building targets.
import rsftex as t

Compile paper from LaTeX source in icassp.tex
t.Paper('icassp', options='12pt', use='hyperref,amsmath')

bash$ scons icassp.pdf
...
bash$ scons icassp.html
...
bash$ scons icassp.install
...

http://rsf.sourceforge.net/Reproducible_Documents
Stretching and aliasing lead to a larger number of samples in the y-space and thus to larger computational expenses. This can be avoided to some extent if the signal in the x-space has been bandpassed, as is often the case with seismic data, with the largest frequency present in the data (f_{max}) smaller than the Nyquist frequency given by the sampling rate (f_{Ny}). Thus, we can replace in our calculations Δx with

$$\Delta x_{\text{max}} = \frac{1}{2f_{\text{max}}}$$

which will result in a Δy_{max} larger than that computed using Δx, the sampling rate in the x-space.

![Illustration of how aliasing can occur while stretching](image)

Figure 2. Illustration of how aliasing can occur while stretching: if the same sampling rate is used for the y-space (lower plot) as for the x-space (upper plot), serious aliasing will occur when transforming back to x-space. This will not happen if the sampling rate in the y-space is smaller than or equal to Δy_{max}

In order to compute Δy_{max}, we will consider two points in the x-space, as seen in Fig. 2, such as

$$x_b = x_a + \Delta x_{\text{max}}$$

(7)
\[\Phi_j = \begin{cases}
0, & \text{for } \mathbf{\hat{k}} \cdot \mathbf{\hat{n}} = 0 \\
\frac{\Omega}{2} \left\{ \sqrt{1 + \left(\frac{\mathbf{\hat{k}} \cdot \mathbf{\hat{n}}}{\mathbf{\hat{k}} \cdot \mathbf{\hat{n}}} \right)^2} - 1 - \ln \left[\sqrt{1 + \left(\frac{\mathbf{\hat{k}} \cdot \mathbf{\hat{n}}}{\mathbf{\hat{k}} \cdot \mathbf{\hat{n}}} \right)^2 + 1} \right] \right\}, & \text{otherwise}
\end{cases} \]

where \(\mathbf{\hat{k}} \cdot \mathbf{\hat{n}} = k_x h_x + k_y h_y \)

and \(j \) can take the values 1 or 2. The frequency domain variables must have incorporated in their value a \(2\pi \) constant (they are defined according to equation (2))

4. Do reverse 3D FFT in order to obtain the \(P(t, m_x, m_y) \) cube.

5. Do reverse log stretch along the time axis and affix to the top of the cube the slices from times smaller than \(t_c \). The final result is a \(P(t, m_x, m_y) \) cube.

Figure 1 shows the impulse response of the above described AMO.
from rsfproj import *

fft3 = 'fft1 | fft3 axis=2 | fft3 axis=3'
sfft3 = 'fft3 axis=3 inv=y | fft3 axis=2 inv=y | fft1 inv=y'

cl below is t_c (min. cutoff time) on pag. 1 in paper

Flow('spike',None,

spike
n1=128 o1=0.4 d1=0.0032 k1=65
n2=256 o2=-1.536 d2=0.012 k2=129
n3=128 o3=-1.024 d3=0.016 k3=65

"

Flow('filt', 'spike', fft3 +
 ' | dipfilter v1=-2.5 v2=-1.5 v3=1.5 v4=2.5 taper=2 pass=0 dim=3 | '
 + sfft3)

Flow('oper', 'spike fft3', 'fkamo h2=2 f2=10 h1=1.0 f1=30')

for case in ['spike','filt']:
 Flow(case+fft3, case, 'stretch rule=L dense=4 | ' + fft3)
 Flow(case+amo, case+fft3, 'oper'),

 add moderprod $[SOURCH8[1]] | %s | stretch rule=L dense=4 invy ... % sfft3
 Flow(case+byte, case+amo, 'byte pclip=100 gainpanel=s')

Result ('impress1', 'spikebyte',
 'grey3 frame1=65 frame2=129 frame3=65 point1=0.333 wanttitle=n')
Result ('impress2', 'spikebyte',
 'grey3 frame1=65 frame2=97 frame3=97 point1=0.333 wanttitle=n')
Result ('ftfilter', 'spikebyte',
 'grey3 frame1=65 frame2=97 frame3=97 point1=0.333 wanttitle=n')

End()
Future: Community Support

- Special issue journals
 - Computing in Science & Engineering
- Web 2.0 publications
- Wikipedia entry for reproducible research

- Motivation
 - scientific integrity
 - robust software development
 - technology transfer